Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfzd.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| elfzd.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| elfzd.3 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| elfzd.4 | ⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) | ||
| elfzd.5 | ⊢ ( 𝜑 → 𝐾 ≤ 𝑁 ) | ||
| Assertion | elfzd | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzd.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | elfzd.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | elfzd.3 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 4 | elfzd.4 | ⊢ ( 𝜑 → 𝑀 ≤ 𝐾 ) | |
| 5 | elfzd.5 | ⊢ ( 𝜑 → 𝐾 ≤ 𝑁 ) | |
| 6 | 1 2 3 | 3jca | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 7 | 6 4 5 | jca32 | ⊢ ( 𝜑 → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 8 | elfz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |