Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) ) |
2 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
3 |
|
nn0z |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) |
4 |
2 3
|
anim12i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
6 |
|
elfzom1b |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
8 |
7
|
notbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
9 |
|
elfzo0 |
⊢ ( ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
10 |
9
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) ) |
11 |
10
|
notbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) ) |
12 |
|
3ianor |
⊢ ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ↔ ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 ∨ ¬ ( 𝐾 − 1 ) ∈ ℕ ∨ ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
13 |
|
elnnne0 |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) ) |
14 |
|
df-ne |
⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) ↔ ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) ) |
16 |
13 15
|
bitr2i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) ↔ 𝑀 ∈ ℕ ) |
17 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
18 |
16 17
|
sylbi |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
19 |
18
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ 𝑀 = 0 → ( 𝑀 − 1 ) ∈ ℕ0 ) ) |
20 |
19
|
con1d |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → 𝑀 = 0 ) ) |
21 |
20
|
imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ ( 𝑀 − 1 ) ∈ ℕ0 ) → 𝑀 = 0 ) |
22 |
21
|
orcd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ ( 𝑀 − 1 ) ∈ ℕ0 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
23 |
22
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
25 |
24
|
com12 |
⊢ ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
26 |
|
ioran |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) |
27 |
|
nn1m1nn |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 = 1 ∨ ( 𝑀 − 1 ) ∈ ℕ ) ) |
28 |
|
df-ne |
⊢ ( 𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾 ) |
29 |
|
necom |
⊢ ( 𝑀 ≠ 𝐾 ↔ 𝐾 ≠ 𝑀 ) |
30 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
31 |
30
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝑀 ∈ ℝ ) |
32 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
35 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝑀 ≤ 𝐾 ) |
36 |
31 34 35
|
leltned |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 < 𝐾 ↔ 𝐾 ≠ 𝑀 ) ) |
37 |
29 36
|
bitr4id |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ≠ 𝐾 ↔ 𝑀 < 𝐾 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 ≠ 𝐾 ↔ 𝑀 < 𝐾 ) ) |
39 |
|
breq1 |
⊢ ( 𝑀 = 1 → ( 𝑀 < 𝐾 ↔ 1 < 𝐾 ) ) |
40 |
39
|
biimpa |
⊢ ( ( 𝑀 = 1 ∧ 𝑀 < 𝐾 ) → 1 < 𝐾 ) |
41 |
|
1red |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 1 ∈ ℝ ) |
42 |
41 33 41
|
ltsub1d |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 1 < 𝐾 ↔ ( 1 − 1 ) < ( 𝐾 − 1 ) ) ) |
43 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
44 |
43
|
breq1i |
⊢ ( ( 1 − 1 ) < ( 𝐾 − 1 ) ↔ 0 < ( 𝐾 − 1 ) ) |
45 |
|
1zzd |
⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℤ ) |
46 |
3 45
|
zsubcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 − 1 ) ∈ ℤ ) |
47 |
46
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
49 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) |
50 |
|
elnnz |
⊢ ( ( 𝐾 − 1 ) ∈ ℕ ↔ ( ( 𝐾 − 1 ) ∈ ℤ ∧ 0 < ( 𝐾 − 1 ) ) ) |
51 |
48 49 50
|
sylanbrc |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℕ ) |
52 |
51
|
ex |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 < ( 𝐾 − 1 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
53 |
44 52
|
syl5bi |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 1 − 1 ) < ( 𝐾 − 1 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
54 |
42 53
|
sylbid |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 1 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
55 |
40 54
|
syl5 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑀 = 1 ∧ 𝑀 < 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
56 |
55
|
expd |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 1 → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 1 → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
58 |
57
|
imp |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
59 |
38 58
|
sylbid |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 ≠ 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
60 |
59
|
exp31 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( 𝑀 ≠ 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
61 |
60
|
com14 |
⊢ ( 𝑀 ≠ 𝐾 → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
62 |
28 61
|
sylbir |
⊢ ( ¬ 𝑀 = 𝐾 → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
63 |
62
|
com23 |
⊢ ( ¬ 𝑀 = 𝐾 → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
64 |
63
|
com14 |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
65 |
64
|
ex |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
66 |
65
|
com14 |
⊢ ( 𝑀 ≤ 𝐾 → ( 𝑀 ∈ ℕ0 → ( 𝑀 = 1 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
67 |
66
|
com13 |
⊢ ( 𝑀 = 1 → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
68 |
30
|
ad2antlr |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
69 |
32
|
adantl |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
70 |
|
1red |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℝ ) |
71 |
68 69 70
|
lesub1d |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 ↔ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) ) |
72 |
3
|
ad2antlr |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 𝐾 ∈ ℤ ) |
73 |
|
1zzd |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 1 ∈ ℤ ) |
74 |
72 73
|
zsubcld |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
75 |
|
nngt0 |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ → 0 < ( 𝑀 − 1 ) ) |
76 |
|
0red |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ℝ ) |
77 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
78 |
30 77
|
syl |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 − 1 ) ∈ ℝ ) |
79 |
78
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 − 1 ) ∈ ℝ ) |
80 |
|
peano2rem |
⊢ ( 𝐾 ∈ ℝ → ( 𝐾 − 1 ) ∈ ℝ ) |
81 |
32 80
|
syl |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 − 1 ) ∈ ℝ ) |
82 |
81
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℝ ) |
83 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑀 − 1 ) ∈ ℝ ∧ ( 𝐾 − 1 ) ∈ ℝ ) → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) |
84 |
76 79 82 83
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) |
85 |
84
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) ) |
86 |
85
|
com13 |
⊢ ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → 0 < ( 𝐾 − 1 ) ) ) ) |
87 |
86
|
ex |
⊢ ( 0 < ( 𝑀 − 1 ) → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → 0 < ( 𝐾 − 1 ) ) ) ) ) |
88 |
87
|
com24 |
⊢ ( 0 < ( 𝑀 − 1 ) → ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → 0 < ( 𝐾 − 1 ) ) ) ) ) |
89 |
75 88
|
syl |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → 0 < ( 𝐾 − 1 ) ) ) ) ) |
90 |
89
|
imp41 |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) |
91 |
74 90 50
|
sylanbrc |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℕ ) |
92 |
91
|
a1d |
⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
93 |
92
|
ex |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
94 |
71 93
|
sylbid |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
95 |
94
|
ex |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
96 |
95
|
com23 |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
97 |
96
|
ex |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
98 |
67 97
|
jaoi |
⊢ ( ( 𝑀 = 1 ∨ ( 𝑀 − 1 ) ∈ ℕ ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
99 |
27 98
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
100 |
13 99
|
sylbir |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
101 |
100
|
ex |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≠ 0 → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) ) |
102 |
101
|
pm2.43a |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≠ 0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
103 |
102
|
com24 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
104 |
103
|
3imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
105 |
104
|
com3l |
⊢ ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
106 |
14 105
|
sylbir |
⊢ ( ¬ 𝑀 = 0 → ( ¬ 𝑀 = 𝐾 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
107 |
106
|
imp |
⊢ ( ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
108 |
26 107
|
sylbi |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
109 |
108
|
com12 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
110 |
109
|
con1d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝐾 − 1 ) ∈ ℕ → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
111 |
110
|
com12 |
⊢ ( ¬ ( 𝐾 − 1 ) ∈ ℕ → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
112 |
30
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
113 |
32
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
114 |
|
1red |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℝ ) |
115 |
112 113 114
|
3jca |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
116 |
115
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
117 |
|
ltsub1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
118 |
116 117
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
119 |
118
|
bicomd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ↔ 𝑀 < 𝐾 ) ) |
120 |
119
|
notbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ↔ ¬ 𝑀 < 𝐾 ) ) |
121 |
|
eqlelt |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 = 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) ) |
122 |
30 32 121
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 = 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) ) |
123 |
122
|
biimpar |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) → 𝑀 = 𝐾 ) |
124 |
123
|
olcd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
125 |
124
|
exp43 |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 < 𝐾 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) ) ) |
126 |
125
|
3imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 < 𝐾 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
127 |
120 126
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
128 |
127
|
com12 |
⊢ ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
129 |
25 111 128
|
3jaoi |
⊢ ( ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 ∨ ¬ ( 𝐾 − 1 ) ∈ ℕ ∨ ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
130 |
12 129
|
sylbi |
⊢ ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
131 |
130
|
com12 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
132 |
11 131
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
133 |
8 132
|
sylbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
134 |
1 133
|
sylbi |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
135 |
134
|
imp |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |