| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfz2nn0 | ⊢ ( 𝑀  ∈  ( 0 ... 𝐾 )  ↔  ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 ) ) | 
						
							| 2 |  | nn0z | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | nn0z | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℤ ) | 
						
							| 4 | 2 3 | anim12i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ ) ) | 
						
							| 6 |  | elfzom1b | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 𝑀  ∈  ( 1 ..^ 𝐾 )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  ∈  ( 1 ..^ 𝐾 )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) ) ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  𝑀  ∈  ( 1 ..^ 𝐾 )  ↔  ¬  ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) ) ) ) | 
						
							| 9 |  | elfzo0 | ⊢ ( ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) )  ↔  ( ( 𝑀  −  1 )  ∈  ℕ0  ∧  ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) )  ↔  ( ( 𝑀  −  1 )  ∈  ℕ0  ∧  ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) ) ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) )  ↔  ¬  ( ( 𝑀  −  1 )  ∈  ℕ0  ∧  ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) ) ) ) | 
						
							| 12 |  | 3ianor | ⊢ ( ¬  ( ( 𝑀  −  1 )  ∈  ℕ0  ∧  ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) )  ↔  ( ¬  ( 𝑀  −  1 )  ∈  ℕ0  ∨  ¬  ( 𝐾  −  1 )  ∈  ℕ  ∨  ¬  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) ) ) | 
						
							| 13 |  | elnnne0 | ⊢ ( 𝑀  ∈  ℕ  ↔  ( 𝑀  ∈  ℕ0  ∧  𝑀  ≠  0 ) ) | 
						
							| 14 |  | df-ne | ⊢ ( 𝑀  ≠  0  ↔  ¬  𝑀  =  0 ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≠  0 )  ↔  ( 𝑀  ∈  ℕ0  ∧  ¬  𝑀  =  0 ) ) | 
						
							| 16 | 13 15 | bitr2i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ¬  𝑀  =  0 )  ↔  𝑀  ∈  ℕ ) | 
						
							| 17 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | sylbi | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ¬  𝑀  =  0 )  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝑀  ∈  ℕ0  →  ( ¬  𝑀  =  0  →  ( 𝑀  −  1 )  ∈  ℕ0 ) ) | 
						
							| 20 | 19 | con1d | ⊢ ( 𝑀  ∈  ℕ0  →  ( ¬  ( 𝑀  −  1 )  ∈  ℕ0  →  𝑀  =  0 ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ¬  ( 𝑀  −  1 )  ∈  ℕ0 )  →  𝑀  =  0 ) | 
						
							| 22 | 21 | orcd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ¬  ( 𝑀  −  1 )  ∈  ℕ0 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝑀  ∈  ℕ0  →  ( ¬  ( 𝑀  −  1 )  ∈  ℕ0  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝑀  −  1 )  ∈  ℕ0  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( ¬  ( 𝑀  −  1 )  ∈  ℕ0  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 26 |  | ioran | ⊢ ( ¬  ( 𝑀  =  0  ∨  𝑀  =  𝐾 )  ↔  ( ¬  𝑀  =  0  ∧  ¬  𝑀  =  𝐾 ) ) | 
						
							| 27 |  | nn1m1nn | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  =  1  ∨  ( 𝑀  −  1 )  ∈  ℕ ) ) | 
						
							| 28 |  | df-ne | ⊢ ( 𝑀  ≠  𝐾  ↔  ¬  𝑀  =  𝐾 ) | 
						
							| 29 |  | necom | ⊢ ( 𝑀  ≠  𝐾  ↔  𝐾  ≠  𝑀 ) | 
						
							| 30 |  | nn0re | ⊢ ( 𝑀  ∈  ℕ0  →  𝑀  ∈  ℝ ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  →  𝑀  ∈  ℝ ) | 
						
							| 32 |  | nn0re | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  𝐾  ∈  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  →  𝐾  ∈  ℝ ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  →  𝑀  ≤  𝐾 ) | 
						
							| 36 | 31 34 35 | leltned | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  <  𝐾  ↔  𝐾  ≠  𝑀 ) ) | 
						
							| 37 | 29 36 | bitr4id | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  ≠  𝐾  ↔  𝑀  <  𝐾 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  ∧  𝑀  =  1 )  →  ( 𝑀  ≠  𝐾  ↔  𝑀  <  𝐾 ) ) | 
						
							| 39 |  | breq1 | ⊢ ( 𝑀  =  1  →  ( 𝑀  <  𝐾  ↔  1  <  𝐾 ) ) | 
						
							| 40 | 39 | biimpa | ⊢ ( ( 𝑀  =  1  ∧  𝑀  <  𝐾 )  →  1  <  𝐾 ) | 
						
							| 41 |  | 1red | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 42 | 41 33 41 | ltsub1d | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 1  <  𝐾  ↔  ( 1  −  1 )  <  ( 𝐾  −  1 ) ) ) | 
						
							| 43 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 44 | 43 | breq1i | ⊢ ( ( 1  −  1 )  <  ( 𝐾  −  1 )  ↔  0  <  ( 𝐾  −  1 ) ) | 
						
							| 45 |  | 1zzd | ⊢ ( 𝐾  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 46 | 3 45 | zsubcld | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  0  <  ( 𝐾  −  1 ) )  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  0  <  ( 𝐾  −  1 ) )  →  0  <  ( 𝐾  −  1 ) ) | 
						
							| 50 |  | elnnz | ⊢ ( ( 𝐾  −  1 )  ∈  ℕ  ↔  ( ( 𝐾  −  1 )  ∈  ℤ  ∧  0  <  ( 𝐾  −  1 ) ) ) | 
						
							| 51 | 48 49 50 | sylanbrc | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  0  <  ( 𝐾  −  1 ) )  →  ( 𝐾  −  1 )  ∈  ℕ ) | 
						
							| 52 | 51 | ex | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 0  <  ( 𝐾  −  1 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 53 | 44 52 | biimtrid | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( 1  −  1 )  <  ( 𝐾  −  1 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 54 | 42 53 | sylbid | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 1  <  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 55 | 40 54 | syl5 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝑀  =  1  ∧  𝑀  <  𝐾 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 56 | 55 | expd | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  =  1  →  ( 𝑀  <  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  =  1  →  ( 𝑀  <  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  ∧  𝑀  =  1 )  →  ( 𝑀  <  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 59 | 38 58 | sylbid | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  ∧  𝑀  ≤  𝐾 )  ∧  𝑀  =  1 )  →  ( 𝑀  ≠  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 60 | 59 | exp31 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  ≤  𝐾  →  ( 𝑀  =  1  →  ( 𝑀  ≠  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 61 | 60 | com14 | ⊢ ( 𝑀  ≠  𝐾  →  ( 𝑀  ≤  𝐾  →  ( 𝑀  =  1  →  ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 62 | 28 61 | sylbir | ⊢ ( ¬  𝑀  =  𝐾  →  ( 𝑀  ≤  𝐾  →  ( 𝑀  =  1  →  ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 63 | 62 | com23 | ⊢ ( ¬  𝑀  =  𝐾  →  ( 𝑀  =  1  →  ( 𝑀  ≤  𝐾  →  ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 64 | 63 | com14 | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  =  1  →  ( 𝑀  ≤  𝐾  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  =  1  →  ( 𝑀  ≤  𝐾  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 66 | 65 | com14 | ⊢ ( 𝑀  ≤  𝐾  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  =  1  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 67 | 66 | com13 | ⊢ ( 𝑀  =  1  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 68 | 30 | ad2antlr | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝑀  ∈  ℝ ) | 
						
							| 69 | 32 | adantl | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℝ ) | 
						
							| 70 |  | 1red | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 71 | 68 69 70 | lesub1d | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  ≤  𝐾  ↔  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) ) ) | 
						
							| 72 | 3 | ad2antlr | ⊢ ( ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 73 |  | 1zzd | ⊢ ( ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  1  ∈  ℤ ) | 
						
							| 74 | 72 73 | zsubcld | ⊢ ( ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  ( 𝐾  −  1 )  ∈  ℤ ) | 
						
							| 75 |  | nngt0 | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ  →  0  <  ( 𝑀  −  1 ) ) | 
						
							| 76 |  | 0red | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  0  ∈  ℝ ) | 
						
							| 77 |  | peano2rem | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 78 | 30 77 | syl | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 80 |  | peano2rem | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝐾  −  1 )  ∈  ℝ ) | 
						
							| 81 | 32 80 | syl | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  −  1 )  ∈  ℝ ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  −  1 )  ∈  ℝ ) | 
						
							| 83 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑀  −  1 )  ∈  ℝ  ∧  ( 𝐾  −  1 )  ∈  ℝ )  →  ( ( 0  <  ( 𝑀  −  1 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  0  <  ( 𝐾  −  1 ) ) ) | 
						
							| 84 | 76 79 82 83 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 0  <  ( 𝑀  −  1 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  0  <  ( 𝐾  −  1 ) ) ) | 
						
							| 85 | 84 | ex | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( ( 0  <  ( 𝑀  −  1 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  0  <  ( 𝐾  −  1 ) ) ) ) | 
						
							| 86 | 85 | com13 | ⊢ ( ( 0  <  ( 𝑀  −  1 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  ( 𝐾  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  0  <  ( 𝐾  −  1 ) ) ) ) | 
						
							| 87 | 86 | ex | ⊢ ( 0  <  ( 𝑀  −  1 )  →  ( ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 )  →  ( 𝐾  ∈  ℕ0  →  ( 𝑀  ∈  ℕ0  →  0  <  ( 𝐾  −  1 ) ) ) ) ) | 
						
							| 88 | 87 | com24 | ⊢ ( 0  <  ( 𝑀  −  1 )  →  ( 𝑀  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 )  →  0  <  ( 𝐾  −  1 ) ) ) ) ) | 
						
							| 89 | 75 88 | syl | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ  →  ( 𝑀  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 )  →  0  <  ( 𝐾  −  1 ) ) ) ) ) | 
						
							| 90 | 89 | imp41 | ⊢ ( ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  0  <  ( 𝐾  −  1 ) ) | 
						
							| 91 | 74 90 50 | sylanbrc | ⊢ ( ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  ( 𝐾  −  1 )  ∈  ℕ ) | 
						
							| 92 | 91 | a1d | ⊢ ( ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 ) )  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 93 | 92 | ex | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑀  −  1 )  ≤  ( 𝐾  −  1 )  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 94 | 71 93 | sylbid | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  ≤  𝐾  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 95 | 94 | ex | ⊢ ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐾  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 96 | 95 | com23 | ⊢ ( ( ( 𝑀  −  1 )  ∈  ℕ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) | 
						
							| 97 | 96 | ex | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 98 | 67 97 | jaoi | ⊢ ( ( 𝑀  =  1  ∨  ( 𝑀  −  1 )  ∈  ℕ )  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 99 | 27 98 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 100 | 13 99 | sylbir | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑀  ≠  0 )  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 101 | 100 | ex | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≠  0  →  ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) ) | 
						
							| 102 | 101 | pm2.43a | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  ≠  0  →  ( 𝑀  ≤  𝐾  →  ( 𝐾  ∈  ℕ0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 103 | 102 | com24 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( 𝑀  ≠  0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) ) ) | 
						
							| 104 | 103 | 3imp | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  ≠  0  →  ( ¬  𝑀  =  𝐾  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 105 | 104 | com3l | ⊢ ( 𝑀  ≠  0  →  ( ¬  𝑀  =  𝐾  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 106 | 14 105 | sylbir | ⊢ ( ¬  𝑀  =  0  →  ( ¬  𝑀  =  𝐾  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) ) | 
						
							| 107 | 106 | imp | ⊢ ( ( ¬  𝑀  =  0  ∧  ¬  𝑀  =  𝐾 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 108 | 26 107 | sylbi | ⊢ ( ¬  ( 𝑀  =  0  ∨  𝑀  =  𝐾 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 109 | 108 | com12 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝑀  =  0  ∨  𝑀  =  𝐾 )  →  ( 𝐾  −  1 )  ∈  ℕ ) ) | 
						
							| 110 | 109 | con1d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝐾  −  1 )  ∈  ℕ  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 111 | 110 | com12 | ⊢ ( ¬  ( 𝐾  −  1 )  ∈  ℕ  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 112 | 30 | adantr | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  𝑀  ∈  ℝ ) | 
						
							| 113 | 32 | adantl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℝ ) | 
						
							| 114 |  | 1red | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  1  ∈  ℝ ) | 
						
							| 115 | 112 113 114 | 3jca | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 116 | 115 | 3adant3 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 117 |  | ltsub1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝑀  <  𝐾  ↔  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) ) ) | 
						
							| 118 | 116 117 | syl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  <  𝐾  ↔  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) ) ) | 
						
							| 119 | 118 | bicomd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ( 𝑀  −  1 )  <  ( 𝐾  −  1 )  ↔  𝑀  <  𝐾 ) ) | 
						
							| 120 | 119 | notbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝑀  −  1 )  <  ( 𝐾  −  1 )  ↔  ¬  𝑀  <  𝐾 ) ) | 
						
							| 121 |  | eqlelt | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( 𝑀  =  𝐾  ↔  ( 𝑀  ≤  𝐾  ∧  ¬  𝑀  <  𝐾 ) ) ) | 
						
							| 122 | 30 32 121 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  =  𝐾  ↔  ( 𝑀  ≤  𝐾  ∧  ¬  𝑀  <  𝐾 ) ) ) | 
						
							| 123 | 122 | biimpar | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  ≤  𝐾  ∧  ¬  𝑀  <  𝐾 ) )  →  𝑀  =  𝐾 ) | 
						
							| 124 | 123 | olcd | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑀  ≤  𝐾  ∧  ¬  𝑀  <  𝐾 ) )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) | 
						
							| 125 | 124 | exp43 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑀  ≤  𝐾  →  ( ¬  𝑀  <  𝐾  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) ) ) | 
						
							| 126 | 125 | 3imp | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  𝑀  <  𝐾  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 127 | 120 126 | sylbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝑀  −  1 )  <  ( 𝐾  −  1 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 128 | 127 | com12 | ⊢ ( ¬  ( 𝑀  −  1 )  <  ( 𝐾  −  1 )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 129 | 25 111 128 | 3jaoi | ⊢ ( ( ¬  ( 𝑀  −  1 )  ∈  ℕ0  ∨  ¬  ( 𝐾  −  1 )  ∈  ℕ  ∨  ¬  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 130 | 12 129 | sylbi | ⊢ ( ¬  ( ( 𝑀  −  1 )  ∈  ℕ0  ∧  ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) )  →  ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 131 | 130 | com12 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( ( 𝑀  −  1 )  ∈  ℕ0  ∧  ( 𝐾  −  1 )  ∈  ℕ  ∧  ( 𝑀  −  1 )  <  ( 𝐾  −  1 ) )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 132 | 11 131 | sylbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  ( 𝑀  −  1 )  ∈  ( 0 ..^ ( 𝐾  −  1 ) )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 133 | 8 132 | sylbid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐾  ∈  ℕ0  ∧  𝑀  ≤  𝐾 )  →  ( ¬  𝑀  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 134 | 1 133 | sylbi | ⊢ ( 𝑀  ∈  ( 0 ... 𝐾 )  →  ( ¬  𝑀  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 135 | 134 | imp | ⊢ ( ( 𝑀  ∈  ( 0 ... 𝐾 )  ∧  ¬  𝑀  ∈  ( 1 ..^ 𝐾 ) )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) |