| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznelfzo | ⊢ ( ( 𝑀  ∈  ( 0 ... 𝐾 )  ∧  ¬  𝑀  ∈  ( 1 ..^ 𝐾 ) )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) | 
						
							| 2 | 1 | ex | ⊢ ( 𝑀  ∈  ( 0 ... 𝐾 )  →  ( ¬  𝑀  ∈  ( 1 ..^ 𝐾 )  →  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 3 |  | elfzole1 | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  1  ≤  𝑀 ) | 
						
							| 4 |  | elfzolt2 | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  𝑀  <  𝐾 ) | 
						
							| 5 |  | elfzoel2 | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  𝐾  ∈  ℤ ) | 
						
							| 6 |  | elfzoelz | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  𝑀  ∈  ℤ ) | 
						
							| 7 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 8 |  | breq1 | ⊢ ( 𝑀  =  0  →  ( 𝑀  <  1  ↔  0  <  1 ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( 𝑀  =  0  →  𝑀  <  1 ) | 
						
							| 10 |  | zre | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  𝑀  ∈  ℝ ) | 
						
							| 12 |  | 1red | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  1  ∈  ℝ ) | 
						
							| 13 | 11 12 | ltnled | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  <  1  ↔  ¬  1  ≤  𝑀 ) ) | 
						
							| 14 | 9 13 | imbitrid | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  =  0  →  ¬  1  ≤  𝑀 ) ) | 
						
							| 15 | 14 | con2d | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  ( 1  ≤  𝑀  →  ¬  𝑀  =  0 ) ) | 
						
							| 16 |  | zre | ⊢ ( 𝐾  ∈  ℤ  →  𝐾  ∈  ℝ ) | 
						
							| 17 |  | ltlen | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( 𝑀  <  𝐾  ↔  ( 𝑀  ≤  𝐾  ∧  𝐾  ≠  𝑀 ) ) ) | 
						
							| 18 | 10 16 17 | syl2anr | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  <  𝐾  ↔  ( 𝑀  ≤  𝐾  ∧  𝐾  ≠  𝑀 ) ) ) | 
						
							| 19 |  | necom | ⊢ ( 𝐾  ≠  𝑀  ↔  𝑀  ≠  𝐾 ) | 
						
							| 20 |  | df-ne | ⊢ ( 𝑀  ≠  𝐾  ↔  ¬  𝑀  =  𝐾 ) | 
						
							| 21 | 19 20 | sylbb | ⊢ ( 𝐾  ≠  𝑀  →  ¬  𝑀  =  𝐾 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑀  ≤  𝐾  ∧  𝐾  ≠  𝑀 )  →  ¬  𝑀  =  𝐾 ) | 
						
							| 23 | 18 22 | biimtrdi | ⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  <  𝐾  →  ¬  𝑀  =  𝐾 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  ( 𝑀  <  𝐾  →  ¬  𝑀  =  𝐾 ) ) ) | 
						
							| 25 | 24 | com23 | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝑀  <  𝐾  →  ( 𝑀  ∈  ℤ  →  ¬  𝑀  =  𝐾 ) ) ) | 
						
							| 26 | 25 | impcom | ⊢ ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  →  ( 𝑀  ∈  ℤ  →  ¬  𝑀  =  𝐾 ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  ¬  𝑀  =  𝐾 ) | 
						
							| 28 | 15 27 | jctird | ⊢ ( ( ( 𝑀  <  𝐾  ∧  𝐾  ∈  ℤ )  ∧  𝑀  ∈  ℤ )  →  ( 1  ≤  𝑀  →  ( ¬  𝑀  =  0  ∧  ¬  𝑀  =  𝐾 ) ) ) | 
						
							| 29 | 4 5 6 28 | syl21anc | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  ( 1  ≤  𝑀  →  ( ¬  𝑀  =  0  ∧  ¬  𝑀  =  𝐾 ) ) ) | 
						
							| 30 | 3 29 | mpd | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  ( ¬  𝑀  =  0  ∧  ¬  𝑀  =  𝐾 ) ) | 
						
							| 31 |  | ioran | ⊢ ( ¬  ( 𝑀  =  0  ∨  𝑀  =  𝐾 )  ↔  ( ¬  𝑀  =  0  ∧  ¬  𝑀  =  𝐾 ) ) | 
						
							| 32 | 30 31 | sylibr | ⊢ ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  ¬  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) | 
						
							| 33 | 32 | a1i | ⊢ ( 𝑀  ∈  ( 0 ... 𝐾 )  →  ( 𝑀  ∈  ( 1 ..^ 𝐾 )  →  ¬  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) | 
						
							| 34 | 33 | con2d | ⊢ ( 𝑀  ∈  ( 0 ... 𝐾 )  →  ( ( 𝑀  =  0  ∨  𝑀  =  𝐾 )  →  ¬  𝑀  ∈  ( 1 ..^ 𝐾 ) ) ) | 
						
							| 35 | 2 34 | impbid | ⊢ ( 𝑀  ∈  ( 0 ... 𝐾 )  →  ( ¬  𝑀  ∈  ( 1 ..^ 𝐾 )  ↔  ( 𝑀  =  0  ∨  𝑀  =  𝐾 ) ) ) |