Step |
Hyp |
Ref |
Expression |
1 |
|
elfznelfzo |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
2 |
1
|
ex |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
3 |
|
elfzole1 |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 1 ≤ 𝑀 ) |
4 |
|
elfzolt2 |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 𝑀 < 𝐾 ) |
5 |
|
elfzoel2 |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 𝐾 ∈ ℤ ) |
6 |
|
elfzoelz |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → 𝑀 ∈ ℤ ) |
7 |
|
0lt1 |
⊢ 0 < 1 |
8 |
|
breq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 < 1 ↔ 0 < 1 ) ) |
9 |
7 8
|
mpbiri |
⊢ ( 𝑀 = 0 → 𝑀 < 1 ) |
10 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
12 |
|
1red |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → 1 ∈ ℝ ) |
13 |
11 12
|
ltnled |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < 1 ↔ ¬ 1 ≤ 𝑀 ) ) |
14 |
9 13
|
syl5ib |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 𝑀 = 0 → ¬ 1 ≤ 𝑀 ) ) |
15 |
14
|
con2d |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 1 ≤ 𝑀 → ¬ 𝑀 = 0 ) ) |
16 |
|
zre |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) |
17 |
|
ltlen |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀 ) ) ) |
18 |
10 16 17
|
syl2anr |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀 ) ) ) |
19 |
|
necom |
⊢ ( 𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾 ) |
20 |
|
df-ne |
⊢ ( 𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾 ) |
21 |
19 20
|
sylbb |
⊢ ( 𝐾 ≠ 𝑀 → ¬ 𝑀 = 𝐾 ) |
22 |
21
|
adantl |
⊢ ( ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≠ 𝑀 ) → ¬ 𝑀 = 𝐾 ) |
23 |
18 22
|
syl6bi |
⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 < 𝐾 → ¬ 𝑀 = 𝐾 ) ) |
24 |
23
|
ex |
⊢ ( 𝐾 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 < 𝐾 → ¬ 𝑀 = 𝐾 ) ) ) |
25 |
24
|
com23 |
⊢ ( 𝐾 ∈ ℤ → ( 𝑀 < 𝐾 → ( 𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾 ) ) ) |
26 |
25
|
impcom |
⊢ ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) → ( 𝑀 ∈ ℤ → ¬ 𝑀 = 𝐾 ) ) |
27 |
26
|
imp |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ¬ 𝑀 = 𝐾 ) |
28 |
15 27
|
jctird |
⊢ ( ( ( 𝑀 < 𝐾 ∧ 𝐾 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 1 ≤ 𝑀 → ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) ) |
29 |
4 5 6 28
|
syl21anc |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 1 ≤ 𝑀 → ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) ) |
30 |
3 29
|
mpd |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) |
31 |
|
ioran |
⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) |
32 |
30 31
|
sylibr |
⊢ ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
33 |
32
|
a1i |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) → ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
34 |
33
|
con2d |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) ) |
35 |
2 34
|
impbid |
⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |