Metamath Proof Explorer


Theorem elfznn

Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005)

Ref Expression
Assertion elfznn ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 elfzelz ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℤ )
2 elfzle1 ( 𝐾 ∈ ( 1 ... 𝑁 ) → 1 ≤ 𝐾 )
3 elnnz1 ( 𝐾 ∈ ℕ ↔ ( 𝐾 ∈ ℤ ∧ 1 ≤ 𝐾 ) )
4 1 2 3 sylanbrc ( 𝐾 ∈ ( 1 ... 𝑁 ) → 𝐾 ∈ ℕ )