| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzouz |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 2 |
|
elnn0uz |
⊢ ( 𝐴 ∈ ℕ0 ↔ 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 3 |
1 2
|
sylibr |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 ∈ ℕ0 ) |
| 4 |
|
elfzolt3b |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 0 ∈ ( 0 ..^ 𝐵 ) ) |
| 5 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝐵 ) ↔ 𝐵 ∈ ℕ ) |
| 6 |
4 5
|
sylib |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐵 ∈ ℕ ) |
| 7 |
|
elfzolt2 |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴 < 𝐵 ) |
| 8 |
3 6 7
|
3jca |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |
| 9 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ0 ) |
| 10 |
9 2
|
sylib |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 11 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℤ ) |
| 13 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
| 14 |
|
elfzo2 |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) ) |
| 15 |
10 12 13 14
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 0 ..^ 𝐵 ) ) |
| 16 |
8 15
|
impbii |
⊢ ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ) |