Metamath Proof Explorer


Theorem elfzo0le

Description: A member in a half-open range of nonnegative integers is less than or equal to the upper bound of the range. (Contributed by Alexander van der Vekens, 23-Sep-2018)

Ref Expression
Assertion elfzo0le ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 elfzo0 ( 𝐴 ∈ ( 0 ..^ 𝐵 ) ↔ ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) )
2 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
3 nnre ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ )
4 ltle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )
5 2 3 4 syl2an ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )
6 5 3impia ( ( 𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴𝐵 )
7 1 6 sylbi ( 𝐴 ∈ ( 0 ..^ 𝐵 ) → 𝐴𝐵 )