| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzossnn |
⊢ ( 1 ..^ 𝑀 ) ⊆ ℕ |
| 2 |
1
|
sseli |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑁 ∈ ℕ ) |
| 3 |
|
elfzouz2 |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 4 |
|
eluznn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 6 |
|
elfzolt2 |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑁 < 𝑀 ) |
| 7 |
2 5 6
|
3jca |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) ) |
| 8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 9 |
8
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 10 |
9
|
sseli |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 11 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 12 |
|
id |
⊢ ( 𝑁 < 𝑀 → 𝑁 < 𝑀 ) |
| 13 |
10 11 12
|
3anim123i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀 ) ) |
| 14 |
|
elfzo2 |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀 ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) → 𝑁 ∈ ( 1 ..^ 𝑀 ) ) |
| 16 |
7 15
|
impbii |
⊢ ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) ) |