Metamath Proof Explorer


Theorem elfzo1

Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion elfzo1 ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) )

Proof

Step Hyp Ref Expression
1 fzossnn ( 1 ..^ 𝑀 ) ⊆ ℕ
2 1 sseli ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑁 ∈ ℕ )
3 elfzouz2 ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ( ℤ𝑁 ) )
4 eluznn ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀 ∈ ℕ )
5 2 3 4 syl2anc ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ℕ )
6 elfzolt2 ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → 𝑁 < 𝑀 )
7 2 5 6 3jca ( 𝑁 ∈ ( 1 ..^ 𝑀 ) → ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) )
8 nnuz ℕ = ( ℤ ‘ 1 )
9 8 eqimssi ℕ ⊆ ( ℤ ‘ 1 )
10 9 sseli ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ ‘ 1 ) )
11 nnz ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ )
12 id ( 𝑁 < 𝑀𝑁 < 𝑀 )
13 10 11 12 3anim123i ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) → ( 𝑁 ∈ ( ℤ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀 ) )
14 elfzo2 ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ( ℤ ‘ 1 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 < 𝑀 ) )
15 13 14 sylibr ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) → 𝑁 ∈ ( 1 ..^ 𝑀 ) )
16 7 15 impbii ( 𝑁 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 < 𝑀 ) )