Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2nn0 |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) ) |
2 |
|
elfz2nn0 |
⊢ ( 𝑁 ∈ ( 0 ... 𝑃 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) |
3 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝐼 < ( 𝑁 − 𝑀 ) ) ) |
4 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
5 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
6 |
|
znnsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ ) ) |
8 |
|
simpr |
⊢ ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℕ0 ) |
9 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℕ0 ) |
10 |
|
nn0addcl |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
11 |
8 9 10
|
syl2anr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
12 |
11
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) ∈ ℕ0 ) |
13 |
|
0red |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) |
14 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
16 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
18 |
13 15 17
|
3jca |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
20 |
|
nn0ge0 |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ 𝑀 ) |
21 |
20
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑀 ) |
22 |
21
|
anim1i |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) |
23 |
|
lelttr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) → 0 < 𝑁 ) ) |
24 |
19 22 23
|
sylc |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 0 < 𝑁 ) |
25 |
24
|
ex |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → 0 < 𝑁 ) ) |
26 |
|
0red |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℝ ) |
27 |
16
|
adantl |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
28 |
|
nn0re |
⊢ ( 𝑃 ∈ ℕ0 → 𝑃 ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
30 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 0 < 𝑃 ) ) |
31 |
26 27 29 30
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 0 < 𝑃 ) ) |
32 |
|
nn0z |
⊢ ( 𝑃 ∈ ℕ0 → 𝑃 ∈ ℤ ) |
33 |
|
elnnz |
⊢ ( 𝑃 ∈ ℕ ↔ ( 𝑃 ∈ ℤ ∧ 0 < 𝑃 ) ) |
34 |
33
|
simplbi2 |
⊢ ( 𝑃 ∈ ℤ → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
35 |
32 34
|
syl |
⊢ ( 𝑃 ∈ ℕ0 → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑃 → 𝑃 ∈ ℕ ) ) |
37 |
31 36
|
syld |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 0 < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
38 |
37
|
exp4b |
⊢ ( 𝑃 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → ( 𝑁 ≤ 𝑃 → 𝑃 ∈ ℕ ) ) ) ) |
39 |
38
|
com24 |
⊢ ( 𝑃 ∈ ℕ0 → ( 𝑁 ≤ 𝑃 → ( 0 < 𝑁 → ( 𝑁 ∈ ℕ0 → 𝑃 ∈ ℕ ) ) ) ) |
40 |
39
|
imp |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 0 < 𝑁 → ( 𝑁 ∈ ℕ0 → 𝑃 ∈ ℕ ) ) ) |
41 |
40
|
com13 |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
43 |
25 42
|
syld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) ) |
44 |
43
|
imp |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → 𝑃 ∈ ℕ ) ) |
46 |
45
|
imp |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
47 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
48 |
47
|
adantl |
⊢ ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
49 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑀 ∈ ℝ ) |
50 |
|
readdcl |
⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
51 |
48 49 50
|
syl2anr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
52 |
51
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) ∈ ℝ ) |
53 |
17
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → 𝑁 ∈ ℝ ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → 𝑁 ∈ ℝ ) |
55 |
54
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
56 |
28
|
adantl |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
57 |
52 55 56
|
3jca |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) ) |
58 |
57
|
adantr |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) ) |
59 |
47
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℝ ) |
60 |
15
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
61 |
17
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
62 |
59 60 61
|
ltaddsubd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐼 ∈ ℕ0 ) → ( ( 𝐼 + 𝑀 ) < 𝑁 ↔ 𝐼 < ( 𝑁 − 𝑀 ) ) ) |
63 |
62
|
exbiri |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐼 ∈ ℕ0 → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) ) |
64 |
63
|
impcomd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) → ( ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) ) |
66 |
65
|
imp |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) → ( 𝐼 + 𝑀 ) < 𝑁 ) |
67 |
66
|
adantr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) → ( 𝐼 + 𝑀 ) < 𝑁 ) |
68 |
67
|
anim1i |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝐼 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ 𝑃 ) ) |
69 |
|
ltletr |
⊢ ( ( ( 𝐼 + 𝑀 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( ( ( 𝐼 + 𝑀 ) < 𝑁 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) < 𝑃 ) ) |
70 |
58 68 69
|
sylc |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ 𝑃 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) < 𝑃 ) |
71 |
70
|
anasss |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) < 𝑃 ) |
72 |
|
elfzo0 |
⊢ ( ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ↔ ( ( 𝐼 + 𝑀 ) ∈ ℕ0 ∧ 𝑃 ∈ ℕ ∧ ( 𝐼 + 𝑀 ) < 𝑃 ) ) |
73 |
12 46 71 72
|
syl3anbrc |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑀 < 𝑁 ) ∧ ( 𝐼 < ( 𝑁 − 𝑀 ) ∧ 𝐼 ∈ ℕ0 ) ) ∧ ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) |
74 |
73
|
exp53 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
75 |
7 74
|
sylbird |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
76 |
75
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( 𝐼 ∈ ℕ0 → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
77 |
76
|
com14 |
⊢ ( 𝐼 ∈ ℕ0 → ( ( 𝑁 − 𝑀 ) ∈ ℕ → ( 𝐼 < ( 𝑁 − 𝑀 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) ) ) |
78 |
77
|
3imp |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( 𝑁 − 𝑀 ) ∈ ℕ ∧ 𝐼 < ( 𝑁 − 𝑀 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
79 |
3 78
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
80 |
79
|
com13 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
81 |
80
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℕ0 ∧ 𝑁 ≤ 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
82 |
2 81
|
sylbi |
⊢ ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
83 |
82
|
com12 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
84 |
1 83
|
sylbi |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → ( 𝑁 ∈ ( 0 ... 𝑃 ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) ) |
85 |
84
|
imp |
⊢ ( ( 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... 𝑃 ) ) → ( 𝐼 ∈ ( 0 ..^ ( 𝑁 − 𝑀 ) ) → ( 𝐼 + 𝑀 ) ∈ ( 0 ..^ 𝑃 ) ) ) |