Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzoelz | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) | |
| 2 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 3 | fzof | ⊢ ..^ : ( ℤ × ℤ ) ⟶ 𝒫 ℤ | |
| 4 | 3 | fovcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 ..^ 𝐶 ) ∈ 𝒫 ℤ ) |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 ..^ 𝐶 ) ∈ 𝒫 ℤ ) |
| 6 | 5 | elpwid | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 ..^ 𝐶 ) ⊆ ℤ ) |
| 7 | id | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ) | |
| 8 | 6 7 | sseldd | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) |