Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | elfzofz | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzouz | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
2 | elfzouz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
3 | elfzuzb | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) | |
4 | 1 2 3 | sylanbrc | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |