Metamath Proof Explorer


Theorem elfzofz

Description: A half-open range is contained in the corresponding closed range. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion elfzofz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzouz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( ℤ𝑀 ) )
2 elfzouz2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ𝐾 ) )
3 elfzuzb ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝐾 ) ) )
4 1 2 3 sylanbrc ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) )