Metamath Proof Explorer


Theorem elfzolt2b

Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion elfzolt2b ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elfzoelz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ℤ )
2 elfzoel2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ )
3 elfzolt2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 < 𝑁 )
4 fzolb ( 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) )
5 1 2 3 4 syl3anbrc ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) )