Metamath Proof Explorer


Theorem elfzolt3

Description: Membership in a half-open integer interval implies that the bounds are unequal. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion elfzolt3 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 < 𝑁 )

Proof

Step Hyp Ref Expression
1 elfzoel1 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℤ )
2 1 zred ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℝ )
3 elfzoelz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ℤ )
4 3 zred ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ℝ )
5 elfzoel2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ )
6 5 zred ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℝ )
7 elfzole1 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀𝐾 )
8 elfzolt2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 < 𝑁 )
9 2 4 6 7 8 lelttrd ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 < 𝑁 )