Metamath Proof Explorer


Theorem elfzom1elfzo

Description: Membership in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 18-Jun-2018)

Ref Expression
Assertion elfzom1elfzo ( ( 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝐼 ∈ ( 0 ..^ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 fzossrbm1 ( 𝑁 ∈ ℤ → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) )
2 1 sselda ( ( 𝑁 ∈ ℤ ∧ 𝐼 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝐼 ∈ ( 0 ..^ 𝑁 ) )