Metamath Proof Explorer


Theorem elfzomin

Description: Membership of an integer in the smallest open range of integers. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion elfzomin ( 𝑍 ∈ ℤ → 𝑍 ∈ ( 𝑍 ..^ ( 𝑍 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 snidg ( 𝑍 ∈ ℤ → 𝑍 ∈ { 𝑍 } )
2 fzosn ( 𝑍 ∈ ℤ → ( 𝑍 ..^ ( 𝑍 + 1 ) ) = { 𝑍 } )
3 1 2 eleqtrrd ( 𝑍 ∈ ℤ → 𝑍 ∈ ( 𝑍 ..^ ( 𝑍 + 1 ) ) )