Metamath Proof Explorer


Theorem elfzop1le2

Description: A member in a half-open integer interval plus 1 is less than or equal to the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elfzop1le2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐾 + 1 ) ≤ 𝑁 )

Proof

Step Hyp Ref Expression
1 elfzolt2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 < 𝑁 )
2 elfzoelz ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ℤ )
3 elfzoel2 ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ )
4 zltp1le ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 < 𝑁 ↔ ( 𝐾 + 1 ) ≤ 𝑁 ) )
5 2 3 4 syl2anc ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐾 < 𝑁 ↔ ( 𝐾 + 1 ) ≤ 𝑁 ) )
6 1 5 mpbid ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐾 + 1 ) ≤ 𝑁 )