| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  →  𝐾  ∈  V ) | 
						
							| 2 | 1 | anim2i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  V ) ) | 
						
							| 3 |  | elfvex | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  V ) | 
						
							| 4 |  | eleq1 | ⊢ ( 𝐾  =  𝑀  →  ( 𝐾  ∈  V  ↔  𝑀  ∈  V ) ) | 
						
							| 5 | 3 4 | syl5ibrcom | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  =  𝑀  →  𝐾  ∈  V ) ) | 
						
							| 6 | 5 | imdistani | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  =  𝑀 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  V ) ) | 
						
							| 7 |  | elex | ⊢ ( 𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝐾  ∈  V ) | 
						
							| 8 | 7 | anim2i | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  V ) ) | 
						
							| 9 | 6 8 | jaodan | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  V ) ) | 
						
							| 10 |  | fzpred | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... 𝑁 )  =  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  𝐾  ∈  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 12 |  | elun | ⊢ ( 𝐾  ∈  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ↔  ( 𝐾  ∈  { 𝑀 }  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  ∈  { 𝑀 }  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 14 |  | elsng | ⊢ ( 𝐾  ∈  V  →  ( 𝐾  ∈  { 𝑀 }  ↔  𝐾  =  𝑀 ) ) | 
						
							| 15 | 14 | orbi1d | ⊢ ( 𝐾  ∈  V  →  ( ( 𝐾  ∈  { 𝑀 }  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  ↔  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 16 | 13 15 | sylan9bb | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  V )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 17 | 2 9 16 | pm5.21nd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  =  𝑀  ∨  𝐾  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) ) |