Metamath Proof Explorer


Theorem elfzuz

Description: A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzuz ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ𝑀 ) )

Proof

Step Hyp Ref Expression
1 elfzuzb ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝐾 ) ) )
2 1 simplbi ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝐾 ∈ ( ℤ𝑀 ) )