Metamath Proof Explorer


Theorem elfzuz2

Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzuz2 ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )

Proof

Step Hyp Ref Expression
1 elfzuzb ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝐾 ) ) )
2 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
3 2 uztrn2 ( ( 𝐾 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝐾 ) ) → 𝑁 ∈ ( ℤ𝑀 ) )
4 1 3 sylbi ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )