Metamath Proof Explorer


Theorem elfzuz3

Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elfzuz3 ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝐾 ) )

Proof

Step Hyp Ref Expression
1 elfzuzb ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ𝑀 ) ∧ 𝑁 ∈ ( ℤ𝐾 ) ) )
2 1 simprbi ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝐾 ) )