| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-gch | ⊢ GCH  =  ( Fin  ∪  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) } ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝐴  ∈  GCH  ↔  𝐴  ∈  ( Fin  ∪  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) } ) ) | 
						
							| 3 |  | elun | ⊢ ( 𝐴  ∈  ( Fin  ∪  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) } )  ↔  ( 𝐴  ∈  Fin  ∨  𝐴  ∈  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) } ) ) | 
						
							| 4 | 2 3 | bitri | ⊢ ( 𝐴  ∈  GCH  ↔  ( 𝐴  ∈  Fin  ∨  𝐴  ∈  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) } ) ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ≺  𝑥  ↔  𝐴  ≺  𝑥 ) ) | 
						
							| 6 |  | pweq | ⊢ ( 𝑦  =  𝐴  →  𝒫  𝑦  =  𝒫  𝐴 ) | 
						
							| 7 | 6 | breq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  ≺  𝒫  𝑦  ↔  𝑥  ≺  𝒫  𝐴 ) ) | 
						
							| 8 | 5 7 | anbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 )  ↔  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) | 
						
							| 9 | 8 | notbid | ⊢ ( 𝑦  =  𝐴  →  ( ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 )  ↔  ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) | 
						
							| 10 | 9 | albidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 )  ↔  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) | 
						
							| 11 | 10 | elabg | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) }  ↔  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) | 
						
							| 12 | 11 | orbi2d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝐴  ∈  Fin  ∨  𝐴  ∈  { 𝑦  ∣  ∀ 𝑥 ¬  ( 𝑦  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝑦 ) } )  ↔  ( 𝐴  ∈  Fin  ∨  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) ) | 
						
							| 13 | 4 12 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  GCH  ↔  ( 𝐴  ∈  Fin  ∨  ∀ 𝑥 ¬  ( 𝐴  ≺  𝑥  ∧  𝑥  ≺  𝒫  𝐴 ) ) ) ) |