Step |
Hyp |
Ref |
Expression |
1 |
|
elghomOLD.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
elghomOLD.2 |
⊢ 𝑊 = ran 𝐻 |
3 |
|
eqid |
⊢ { 𝑓 ∣ ( 𝑓 : ran 𝐺 ⟶ ran 𝐻 ∧ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( ( 𝑓 ‘ 𝑥 ) 𝐻 ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝐺 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : ran 𝐺 ⟶ ran 𝐻 ∧ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( ( 𝑓 ‘ 𝑥 ) 𝐻 ( 𝑓 ‘ 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 𝐺 𝑦 ) ) ) } |
4 |
3
|
elghomlem2OLD |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) → ( 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ↔ ( 𝐹 : ran 𝐺 ⟶ ran 𝐻 ∧ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ) ) |
5 |
1 2
|
feq23i |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑊 ↔ 𝐹 : ran 𝐺 ⟶ ran 𝐻 ) |
6 |
1
|
raleqi |
⊢ ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ↔ ∀ 𝑦 ∈ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) |
7 |
1 6
|
raleqbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) |
8 |
5 7
|
anbi12i |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑊 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ↔ ( 𝐹 : ran 𝐺 ⟶ ran 𝐻 ∧ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ) |
9 |
4 8
|
bitr4di |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) → ( 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑊 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ) ) |