Step |
Hyp |
Ref |
Expression |
1 |
|
treq |
⊢ ( 𝑢 = 𝑈 → ( Tr 𝑢 ↔ Tr 𝑈 ) ) |
2 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈 ) ) |
3 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( { 𝑥 , 𝑦 } ∈ 𝑢 ↔ { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
4 |
3
|
raleqbi1dv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ↑m 𝑥 ) = ( 𝑈 ↑m 𝑥 ) ) |
6 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( ∪ ran 𝑦 ∈ 𝑢 ↔ ∪ ran 𝑦 ∈ 𝑈 ) ) |
7 |
5 6
|
raleqbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ↔ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) |
8 |
2 4 7
|
3anbi123d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ↔ ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) |
9 |
8
|
raleqbi1dv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) |
10 |
1 9
|
anbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( Tr 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) ↔ ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) ) |
11 |
|
df-gru |
⊢ Univ = { 𝑢 ∣ ( Tr 𝑢 ∧ ∀ 𝑥 ∈ 𝑢 ( 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ∧ ∀ 𝑦 ∈ ( 𝑢 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑢 ) ) } |
12 |
10 11
|
elab2g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) ) |