Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 𝐴 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ℜ ‘ 𝑥 ) ∈ ℤ ↔ ( ℜ ‘ 𝐴 ) ∈ ℤ ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ℑ ‘ 𝑥 ) = ( ℑ ‘ 𝐴 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ℑ ‘ 𝑥 ) ∈ ℤ ↔ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
5 |
2 4
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ℜ ‘ 𝑥 ) ∈ ℤ ∧ ( ℑ ‘ 𝑥 ) ∈ ℤ ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) ) |
6 |
|
df-gz |
⊢ ℤ[i] = { 𝑥 ∈ ℂ ∣ ( ( ℜ ‘ 𝑥 ) ∈ ℤ ∧ ( ℑ ‘ 𝑥 ) ∈ ℤ ) } |
7 |
5 6
|
elrab2 |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) ) |
8 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) ) |
9 |
7 8
|
bitr4i |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |