Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
3 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
6 |
5
|
2ralbidv |
⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
7 |
|
df-hmop |
⊢ HrmOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) } |
8 |
6 7
|
elrab2 |
⊢ ( 𝑇 ∈ HrmOp ↔ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
9 |
|
ax-hilex |
⊢ ℋ ∈ V |
10 |
9 9
|
elmap |
⊢ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ ) |
11 |
10
|
anbi1i |
⊢ ( ( 𝑇 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
12 |
8 11
|
bitri |
⊢ ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |