Metamath Proof Explorer


Theorem elhmop

Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elhmop ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 fveq1 ( 𝑡 = 𝑇 → ( 𝑡𝑦 ) = ( 𝑇𝑦 ) )
2 1 oveq2d ( 𝑡 = 𝑇 → ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih ( 𝑇𝑦 ) ) )
3 fveq1 ( 𝑡 = 𝑇 → ( 𝑡𝑥 ) = ( 𝑇𝑥 ) )
4 3 oveq1d ( 𝑡 = 𝑇 → ( ( 𝑡𝑥 ) ·ih 𝑦 ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) )
5 2 4 eqeq12d ( 𝑡 = 𝑇 → ( ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 ) ↔ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
6 5 2ralbidv ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
7 df-hmop HrmOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡𝑦 ) ) = ( ( 𝑡𝑥 ) ·ih 𝑦 ) }
8 6 7 elrab2 ( 𝑇 ∈ HrmOp ↔ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
9 ax-hilex ℋ ∈ V
10 9 9 elmap ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ )
11 10 anbi1i ( ( 𝑇 ∈ ( ℋ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )
12 8 11 bitri ( 𝑇 ∈ HrmOp ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇𝑦 ) ) = ( ( 𝑇𝑥 ) ·ih 𝑦 ) ) )