Metamath Proof Explorer


Theorem elhomai

Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h 𝐻 = ( Homa𝐶 )
homafval.b 𝐵 = ( Base ‘ 𝐶 )
homafval.c ( 𝜑𝐶 ∈ Cat )
homaval.j 𝐽 = ( Hom ‘ 𝐶 )
homaval.x ( 𝜑𝑋𝐵 )
homaval.y ( 𝜑𝑌𝐵 )
elhomai.f ( 𝜑𝐹 ∈ ( 𝑋 𝐽 𝑌 ) )
Assertion elhomai ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ( 𝑋 𝐻 𝑌 ) 𝐹 )

Proof

Step Hyp Ref Expression
1 homarcl.h 𝐻 = ( Homa𝐶 )
2 homafval.b 𝐵 = ( Base ‘ 𝐶 )
3 homafval.c ( 𝜑𝐶 ∈ Cat )
4 homaval.j 𝐽 = ( Hom ‘ 𝐶 )
5 homaval.x ( 𝜑𝑋𝐵 )
6 homaval.y ( 𝜑𝑌𝐵 )
7 elhomai.f ( 𝜑𝐹 ∈ ( 𝑋 𝐽 𝑌 ) )
8 eqidd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ )
9 1 2 3 4 5 6 elhoma ( 𝜑 → ( ⟨ 𝑋 , 𝑌 ⟩ ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( ⟨ 𝑋 , 𝑌 ⟩ = ⟨ 𝑋 , 𝑌 ⟩ ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) )
10 8 7 9 mpbir2and ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ( 𝑋 𝐻 𝑌 ) 𝐹 )