Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elicc2i.1 | ⊢ 𝐴 ∈ ℝ | |
| elicc2i.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | elicc2i | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2i.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | elicc2i.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |