Metamath Proof Explorer


Theorem elicc4

Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion elicc4 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elicc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵 ) ) )
2 3anass ( ( 𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴𝐶𝐶𝐵 ) ) )
3 1 2 bitrdi ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴𝐶𝐶𝐵 ) ) ) )
4 3 baibd ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
5 4 3impa ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )