Description: Membership in a closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | elicc4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
2 | 3anass | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
3 | 1 2 | bitrdi | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) ) |
4 | 3 | baibd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
5 | 4 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |