Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eliccd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
eliccd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
eliccd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
eliccd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
eliccd.5 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | ||
Assertion | eliccd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | eliccd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
3 | eliccd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
4 | eliccd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
5 | eliccd.5 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | |
6 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
8 | 3 4 5 7 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |