Metamath Proof Explorer


Theorem eliccd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccd.1 ( 𝜑𝐴 ∈ ℝ )
eliccd.2 ( 𝜑𝐵 ∈ ℝ )
eliccd.3 ( 𝜑𝐶 ∈ ℝ )
eliccd.4 ( 𝜑𝐴𝐶 )
eliccd.5 ( 𝜑𝐶𝐵 )
Assertion eliccd ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eliccd.1 ( 𝜑𝐴 ∈ ℝ )
2 eliccd.2 ( 𝜑𝐵 ∈ ℝ )
3 eliccd.3 ( 𝜑𝐶 ∈ ℝ )
4 eliccd.4 ( 𝜑𝐴𝐶 )
5 eliccd.5 ( 𝜑𝐶𝐵 )
6 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) ) )
7 1 2 6 syl2anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵 ) ) )
8 3 4 5 7 mpbir3and ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )