Metamath Proof Explorer


Theorem eliccelicod

Description: A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses eliccelicod.a ( 𝜑𝐴 ∈ ℝ* )
eliccelicod.b ( 𝜑𝐵 ∈ ℝ* )
eliccelicod.c ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )
eliccelicod.d ( 𝜑𝐶𝐵 )
Assertion eliccelicod ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eliccelicod.a ( 𝜑𝐴 ∈ ℝ* )
2 eliccelicod.b ( 𝜑𝐵 ∈ ℝ* )
3 eliccelicod.c ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )
4 eliccelicod.d ( 𝜑𝐶𝐵 )
5 eliccxr ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ* )
6 3 5 syl ( 𝜑𝐶 ∈ ℝ* )
7 iccgelb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴𝐶 )
8 1 2 3 7 syl3anc ( 𝜑𝐴𝐶 )
9 iccleub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶𝐵 )
10 1 2 3 9 syl3anc ( 𝜑𝐶𝐵 )
11 6 2 10 4 xrleneltd ( 𝜑𝐶 < 𝐵 )
12 1 2 6 8 11 elicod ( 𝜑𝐶 ∈ ( 𝐴 [,) 𝐵 ) )