Step |
Hyp |
Ref |
Expression |
1 |
|
eliccelicod.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
eliccelicod.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
eliccelicod.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
4 |
|
eliccelicod.d |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
5 |
|
eliccxr |
⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ* ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
7 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
8 |
1 2 3 7
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
9 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ≤ 𝐵 ) |
10 |
1 2 3 9
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
11 |
6 2 10 4
|
xrleneltd |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
12 |
1 2 6 8 11
|
elicod |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |