| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliccnelico.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
eliccnelico.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
eliccnelico.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
|
eliccnelico.nel |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 5 |
|
eliccxr |
⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ* ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 7 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ≤ 𝐵 ) |
| 8 |
1 2 3 7
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐴 ∈ ℝ* ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ* ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℝ* ) |
| 12 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 13 |
1 2 3 12
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → ¬ 𝐵 ≤ 𝐶 ) |
| 16 |
|
xrltnle |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
| 17 |
6 2 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
| 19 |
15 18
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐶 < 𝐵 ) |
| 20 |
9 10 11 14 19
|
elicod |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → ¬ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 22 |
20 21
|
condan |
⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
| 23 |
6 2 8 22
|
xrletrid |
⊢ ( 𝜑 → 𝐶 = 𝐵 ) |