Step |
Hyp |
Ref |
Expression |
1 |
|
eliccnelico.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
eliccnelico.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
eliccnelico.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
4 |
|
eliccnelico.nel |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
5 |
|
eliccxr |
⊢ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) → 𝐶 ∈ ℝ* ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
7 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ≤ 𝐵 ) |
8 |
1 2 3 7
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐴 ∈ ℝ* ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ℝ* ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ℝ* ) |
12 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
13 |
1 2 3 12
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → ¬ 𝐵 ≤ 𝐶 ) |
16 |
|
xrltnle |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
17 |
6 2 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → ( 𝐶 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐶 ) ) |
19 |
15 18
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐶 < 𝐵 ) |
20 |
9 10 11 14 19
|
elicod |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐶 ) → ¬ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
22 |
20 21
|
condan |
⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
23 |
6 2 8 22
|
xrletrid |
⊢ ( 𝜑 → 𝐶 = 𝐵 ) |