Metamath Proof Explorer


Theorem eliccxrd

Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliccxrd.1 ( 𝜑𝐴 ∈ ℝ* )
eliccxrd.2 ( 𝜑𝐵 ∈ ℝ* )
eliccxrd.3 ( 𝜑𝐶 ∈ ℝ* )
eliccxrd.4 ( 𝜑𝐴𝐶 )
eliccxrd.5 ( 𝜑𝐶𝐵 )
Assertion eliccxrd ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eliccxrd.1 ( 𝜑𝐴 ∈ ℝ* )
2 eliccxrd.2 ( 𝜑𝐵 ∈ ℝ* )
3 eliccxrd.3 ( 𝜑𝐶 ∈ ℝ* )
4 eliccxrd.4 ( 𝜑𝐴𝐶 )
5 eliccxrd.5 ( 𝜑𝐶𝐵 )
6 4 5 jca ( 𝜑 → ( 𝐴𝐶𝐶𝐵 ) )
7 elicc4 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
8 1 2 3 7 syl3anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
9 6 8 mpbird ( 𝜑𝐶 ∈ ( 𝐴 [,] 𝐵 ) )