Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eliccxrd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
eliccxrd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
eliccxrd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
eliccxrd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
eliccxrd.5 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | ||
Assertion | eliccxrd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxrd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | eliccxrd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
3 | eliccxrd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
4 | eliccxrd.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
5 | eliccxrd.5 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐵 ) | |
6 | 4 5 | jca | ⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
7 | elicc4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
8 | 1 2 3 7 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
9 | 6 8 | mpbird | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |