Description: Membership in a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elicod.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| elicod.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| elicod.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| elicod.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
| elicod.5 | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) | ||
| Assertion | elicod | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicod.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | elicod.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | elicod.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | elicod.4 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
| 5 | elicod.5 | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) | |
| 6 | elico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 8 | 3 4 5 7 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |