| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
| 2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
| 3 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 4 |
|
elico1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 5 |
4
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 6 |
5
|
simp1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 7 |
1 2 3 6
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐶 ∈ ℝ* ) |
| 8 |
5
|
simp2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ≤ 𝐶 ) |
| 9 |
1 2 3 8
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐴 ≤ 𝐶 ) |
| 10 |
1 2
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 12 |
5
|
simp3d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 < 𝐵 ) |
| 13 |
10 3 12
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐶 < 𝐵 ) |
| 14 |
|
elioo1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 15 |
14
|
notbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ¬ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 17 |
|
3anan32 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) ∧ 𝐴 < 𝐶 ) ) |
| 18 |
17
|
notbii |
⊢ ( ¬ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ¬ ( ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) ∧ 𝐴 < 𝐶 ) ) |
| 19 |
|
imnan |
⊢ ( ( ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) → ¬ 𝐴 < 𝐶 ) ↔ ¬ ( ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) ∧ 𝐴 < 𝐶 ) ) |
| 20 |
18 19
|
bitr4i |
⊢ ( ¬ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) → ¬ 𝐴 < 𝐶 ) ) |
| 21 |
16 20
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) → ¬ 𝐴 < 𝐶 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐶 < 𝐵 ) ) → ¬ 𝐴 < 𝐶 ) |
| 23 |
10 11 7 13 22
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → ¬ 𝐴 < 𝐶 ) |
| 24 |
|
xeqlelt |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 = 𝐶 ↔ ( 𝐴 ≤ 𝐶 ∧ ¬ 𝐴 < 𝐶 ) ) ) |
| 25 |
24
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ ¬ 𝐴 < 𝐶 ) ) → 𝐴 = 𝐶 ) |
| 26 |
1 7 9 23 25
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐴 = 𝐶 ) |
| 27 |
26
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 = 𝐶 ) ) |
| 28 |
|
eqcom |
⊢ ( 𝐴 = 𝐶 ↔ 𝐶 = 𝐴 ) |
| 29 |
27 28
|
imbitrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 = 𝐴 ) ) |
| 30 |
|
pm5.6 |
⊢ ( ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ ¬ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 = 𝐴 ) ↔ ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝐶 = 𝐴 ) ) ) |
| 31 |
29 30
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝐶 = 𝐴 ) ) ) |
| 32 |
|
orcom |
⊢ ( ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝐶 = 𝐴 ) ↔ ( 𝐶 = 𝐴 ∨ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 33 |
31 32
|
imbitrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐶 = 𝐴 ) |
| 35 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 36 |
34 35
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐶 ∈ ℝ* ) |
| 37 |
35
|
xrleidd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐴 ≤ 𝐴 ) |
| 38 |
37 34
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐴 ≤ 𝐶 ) |
| 39 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐴 < 𝐵 ) |
| 40 |
34 39
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐶 < 𝐵 ) |
| 41 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 42 |
35 41 4
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 43 |
36 38 40 42
|
mpbir3and |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 = 𝐴 ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 44 |
|
ioossico |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 46 |
44 45
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 47 |
43 46
|
jaodan |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 = 𝐴 ∨ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 48 |
47
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐶 = 𝐴 ∨ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) ) |
| 49 |
33 48
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 = 𝐴 ∨ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) ) ) |