Metamath Proof Explorer


Theorem elid

Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 after elrid . (Contributed by BJ, 28-Aug-2022)

Ref Expression
Assertion elid ( 𝐴 ∈ I ↔ ∃ 𝑥 𝐴 = ⟨ 𝑥 , 𝑥 ⟩ )

Proof

Step Hyp Ref Expression
1 reli Rel I
2 dfrel3 ( Rel I ↔ ( I ↾ V ) = I )
3 1 2 mpbi ( I ↾ V ) = I
4 3 eqcomi I = ( I ↾ V )
5 4 eleq2i ( 𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V ) )
6 elrid ( 𝐴 ∈ ( I ↾ V ) ↔ ∃ 𝑥 ∈ V 𝐴 = ⟨ 𝑥 , 𝑥 ⟩ )
7 rexv ( ∃ 𝑥 ∈ V 𝐴 = ⟨ 𝑥 , 𝑥 ⟩ ↔ ∃ 𝑥 𝐴 = ⟨ 𝑥 , 𝑥 ⟩ )
8 5 6 7 3bitri ( 𝐴 ∈ I ↔ ∃ 𝑥 𝐴 = ⟨ 𝑥 , 𝑥 ⟩ )