Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 after elrid . (Contributed by BJ, 28-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | elid | ⊢ ( 𝐴 ∈ I ↔ ∃ 𝑥 𝐴 = 〈 𝑥 , 𝑥 〉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli | ⊢ Rel I | |
2 | dfrel3 | ⊢ ( Rel I ↔ ( I ↾ V ) = I ) | |
3 | 1 2 | mpbi | ⊢ ( I ↾ V ) = I |
4 | 3 | eqcomi | ⊢ I = ( I ↾ V ) |
5 | 4 | eleq2i | ⊢ ( 𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V ) ) |
6 | elrid | ⊢ ( 𝐴 ∈ ( I ↾ V ) ↔ ∃ 𝑥 ∈ V 𝐴 = 〈 𝑥 , 𝑥 〉 ) | |
7 | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝐴 = 〈 𝑥 , 𝑥 〉 ↔ ∃ 𝑥 𝐴 = 〈 𝑥 , 𝑥 〉 ) | |
8 | 5 6 7 | 3bitri | ⊢ ( 𝐴 ∈ I ↔ ∃ 𝑥 𝐴 = 〈 𝑥 , 𝑥 〉 ) |