Metamath Proof Explorer


Theorem elidinxpid

Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elidinxpid ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑥𝐴 𝐵 = ⟨ 𝑥 , 𝑥 ⟩ )

Proof

Step Hyp Ref Expression
1 elidinxp ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( 𝐴𝐴 ) 𝐵 = ⟨ 𝑥 , 𝑥 ⟩ )
2 inidm ( 𝐴𝐴 ) = 𝐴
3 2 rexeqi ( ∃ 𝑥 ∈ ( 𝐴𝐴 ) 𝐵 = ⟨ 𝑥 , 𝑥 ⟩ ↔ ∃ 𝑥𝐴 𝐵 = ⟨ 𝑥 , 𝑥 ⟩ )
4 1 3 bitri ( 𝐵 ∈ ( I ∩ ( 𝐴 × 𝐴 ) ) ↔ ∃ 𝑥𝐴 𝐵 = ⟨ 𝑥 , 𝑥 ⟩ )