Metamath Proof Explorer


Theorem elif

Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005)

Ref Expression
Assertion elif ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑𝐴𝐵 ) ∨ ( ¬ 𝜑𝐴𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐵 → ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴𝐵 ) )
2 eleq2 ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐶 → ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴𝐶 ) )
3 1 2 elimif ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑𝐴𝐵 ) ∨ ( ¬ 𝜑𝐴𝐶 ) ) )