Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
3 |
1 2
|
elicc2i |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
4 |
3
|
simp1bi |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 𝑋 ∈ ℝ ) |
5 |
2
|
a1i |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 1 / 2 ) ∈ ℝ ) |
6 |
|
1re |
⊢ 1 ∈ ℝ |
7 |
6
|
a1i |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 1 ∈ ℝ ) |
8 |
3
|
simp3bi |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 𝑋 ≤ ( 1 / 2 ) ) |
9 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
10 |
2 6 9
|
ltleii |
⊢ ( 1 / 2 ) ≤ 1 |
11 |
10
|
a1i |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 1 / 2 ) ≤ 1 ) |
12 |
4 5 7 8 11
|
letrd |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → 𝑋 ≤ 1 ) |
13 |
12
|
pm4.71ri |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ≤ 1 ∧ 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ) ) |
14 |
|
ancom |
⊢ ( ( 𝑋 ≤ 1 ∧ 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ) ↔ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ) |
15 |
|
an32 |
⊢ ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ↔ ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
16 |
|
df-3an |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
17 |
3 16
|
bitri |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
18 |
17
|
anbi1i |
⊢ ( ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ↔ ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ) |
19 |
1 6
|
elicc2i |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
20 |
|
df-3an |
⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ) |
21 |
19 20
|
bitri |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ) |
22 |
21
|
anbi1i |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ↔ ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ 𝑋 ≤ 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
23 |
15 18 22
|
3bitr4i |
⊢ ( ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ∧ 𝑋 ≤ 1 ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
24 |
14 23
|
bitri |
⊢ ( ( 𝑋 ≤ 1 ∧ 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
25 |
13 24
|
bitri |
⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |