| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elicc01 |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 2 |
1
|
simp1bi |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 𝑋 ∈ ℝ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ∈ ℝ ) |
| 4 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 5 |
|
letric |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝑋 ≤ ( 1 / 2 ) ∨ ( 1 / 2 ) ≤ 𝑋 ) ) |
| 6 |
2 4 5
|
sylancl |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( 𝑋 ≤ ( 1 / 2 ) ∨ ( 1 / 2 ) ≤ 𝑋 ) ) |
| 7 |
6
|
orcanai |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → ( 1 / 2 ) ≤ 𝑋 ) |
| 8 |
1
|
simp3bi |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → 𝑋 ≤ 1 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ≤ 1 ) |
| 10 |
|
1re |
⊢ 1 ∈ ℝ |
| 11 |
4 10
|
elicc2i |
⊢ ( 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ ( 1 / 2 ) ≤ 𝑋 ∧ 𝑋 ≤ 1 ) ) |
| 12 |
3 7 9 11
|
syl3anbrc |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ ¬ 𝑋 ≤ ( 1 / 2 ) ) → 𝑋 ∈ ( ( 1 / 2 ) [,] 1 ) ) |