Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eliin | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 2 | 1 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
| 3 | df-iin | ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 } | |
| 4 | 2 3 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |