Metamath Proof Explorer


Theorem eliin

Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion eliin ( 𝐴𝑉 → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝐶𝐴𝐶 ) )
2 1 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑥𝐵 𝑦𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
3 df-iin 𝑥𝐵 𝐶 = { 𝑦 ∣ ∀ 𝑥𝐵 𝑦𝐶 }
4 2 3 elab2g ( 𝐴𝑉 → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )