Metamath Proof Explorer


Theorem eliin2f

Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis eliin2f.1 𝑥 𝐵
Assertion eliin2f ( 𝐵 ≠ ∅ → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 eliin2f.1 𝑥 𝐵
2 eliin ( 𝐴 ∈ V → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
3 2 adantl ( ( 𝐵 ≠ ∅ ∧ 𝐴 ∈ V ) → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
4 prcnel ( ¬ 𝐴 ∈ V → ¬ 𝐴 𝑥𝐵 𝐶 )
5 4 adantl ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 𝑥𝐵 𝐶 )
6 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
7 6 biimpi ( 𝐵 ≠ ∅ → ∃ 𝑦 𝑦𝐵 )
8 7 adantr ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑦 𝑦𝐵 )
9 prcnel ( ¬ 𝐴 ∈ V → ¬ 𝐴 𝑦 / 𝑥 𝐶 )
10 9 a1d ( ¬ 𝐴 ∈ V → ( 𝑦𝐵 → ¬ 𝐴 𝑦 / 𝑥 𝐶 ) )
11 10 adantl ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( 𝑦𝐵 → ¬ 𝐴 𝑦 / 𝑥 𝐶 ) )
12 11 ancld ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( 𝑦𝐵 → ( 𝑦𝐵 ∧ ¬ 𝐴 𝑦 / 𝑥 𝐶 ) ) )
13 12 eximdv ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( ∃ 𝑦 𝑦𝐵 → ∃ 𝑦 ( 𝑦𝐵 ∧ ¬ 𝐴 𝑦 / 𝑥 𝐶 ) ) )
14 8 13 mpd ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑦 ( 𝑦𝐵 ∧ ¬ 𝐴 𝑦 / 𝑥 𝐶 ) )
15 df-rex ( ∃ 𝑦𝐵 ¬ 𝐴 𝑦 / 𝑥 𝐶 ↔ ∃ 𝑦 ( 𝑦𝐵 ∧ ¬ 𝐴 𝑦 / 𝑥 𝐶 ) )
16 14 15 sylibr ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑦𝐵 ¬ 𝐴 𝑦 / 𝑥 𝐶 )
17 nfcv 𝑦 𝐵
18 nfv 𝑦 ¬ 𝐴𝐶
19 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
20 19 nfel2 𝑥 𝐴 𝑦 / 𝑥 𝐶
21 20 nfn 𝑥 ¬ 𝐴 𝑦 / 𝑥 𝐶
22 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
23 22 eleq2d ( 𝑥 = 𝑦 → ( 𝐴𝐶𝐴 𝑦 / 𝑥 𝐶 ) )
24 23 notbid ( 𝑥 = 𝑦 → ( ¬ 𝐴𝐶 ↔ ¬ 𝐴 𝑦 / 𝑥 𝐶 ) )
25 1 17 18 21 24 cbvrexfw ( ∃ 𝑥𝐵 ¬ 𝐴𝐶 ↔ ∃ 𝑦𝐵 ¬ 𝐴 𝑦 / 𝑥 𝐶 )
26 16 25 sylibr ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑥𝐵 ¬ 𝐴𝐶 )
27 rexnal ( ∃ 𝑥𝐵 ¬ 𝐴𝐶 ↔ ¬ ∀ 𝑥𝐵 𝐴𝐶 )
28 26 27 sylib ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ¬ ∀ 𝑥𝐵 𝐴𝐶 )
29 5 28 2falsed ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
30 3 29 pm2.61dan ( 𝐵 ≠ ∅ → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )