Step |
Hyp |
Ref |
Expression |
1 |
|
eliin2f.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
eliin |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐵 ≠ ∅ ∧ 𝐴 ∈ V ) → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
4 |
|
prcnel |
⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ) |
5 |
4
|
adantl |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ) |
6 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
7 |
6
|
biimpi |
⊢ ( 𝐵 ≠ ∅ → ∃ 𝑦 𝑦 ∈ 𝐵 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑦 𝑦 ∈ 𝐵 ) |
9 |
|
prcnel |
⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
10 |
9
|
a1d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑦 ∈ 𝐵 → ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( 𝑦 ∈ 𝐵 → ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
12 |
11
|
ancld |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
13 |
12
|
eximdv |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
14 |
8 13
|
mpd |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
16 |
14 15
|
sylibr |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑦 ∈ 𝐵 ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
18 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ 𝐴 ∈ 𝐶 |
19 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
20 |
19
|
nfel2 |
⊢ Ⅎ 𝑥 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
21 |
20
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
22 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
23 |
22
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
24 |
23
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝐴 ∈ 𝐶 ↔ ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
25 |
1 17 18 21 24
|
cbvrexfw |
⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ 𝐴 ∈ 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ¬ 𝐴 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
26 |
16 25
|
sylibr |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ∃ 𝑥 ∈ 𝐵 ¬ 𝐴 ∈ 𝐶 ) |
27 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐵 ¬ 𝐴 ∈ 𝐶 ↔ ¬ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) |
28 |
26 27
|
sylib |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ¬ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) |
29 |
5 28
|
2falsed |
⊢ ( ( 𝐵 ≠ ∅ ∧ ¬ 𝐴 ∈ V ) → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
30 |
3 29
|
pm2.61dan |
⊢ ( 𝐵 ≠ ∅ → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |