Metamath Proof Explorer


Theorem eliincex

Description: Counterexample to show that the additional conditions in eliin and eliin2 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eliinct.1 𝐴 = V
eliinct.2 𝐵 = ∅
Assertion eliincex ¬ ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 eliinct.1 𝐴 = V
2 eliinct.2 𝐵 = ∅
3 nvel ¬ V ∈ 𝑥𝐵 𝐶
4 1 3 eqneltri ¬ 𝐴 𝑥𝐵 𝐶
5 ral0 𝑥 ∈ ∅ 𝐴𝐶
6 2 raleqi ( ∀ 𝑥𝐵 𝐴𝐶 ↔ ∀ 𝑥 ∈ ∅ 𝐴𝐶 )
7 5 6 mpbir 𝑥𝐵 𝐴𝐶
8 pm3.22 ( ( ¬ 𝐴 𝑥𝐵 𝐶 ∧ ∀ 𝑥𝐵 𝐴𝐶 ) → ( ∀ 𝑥𝐵 𝐴𝐶 ∧ ¬ 𝐴 𝑥𝐵 𝐶 ) )
9 8 olcd ( ( ¬ 𝐴 𝑥𝐵 𝐶 ∧ ∀ 𝑥𝐵 𝐴𝐶 ) → ( ( 𝐴 𝑥𝐵 𝐶 ∧ ¬ ∀ 𝑥𝐵 𝐴𝐶 ) ∨ ( ∀ 𝑥𝐵 𝐴𝐶 ∧ ¬ 𝐴 𝑥𝐵 𝐶 ) ) )
10 xor ( ¬ ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) ↔ ( ( 𝐴 𝑥𝐵 𝐶 ∧ ¬ ∀ 𝑥𝐵 𝐴𝐶 ) ∨ ( ∀ 𝑥𝐵 𝐴𝐶 ∧ ¬ 𝐴 𝑥𝐵 𝐶 ) ) )
11 9 10 sylibr ( ( ¬ 𝐴 𝑥𝐵 𝐶 ∧ ∀ 𝑥𝐵 𝐴𝐶 ) → ¬ ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
12 4 7 11 mp2an ¬ ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 )