Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eliind.a | ⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ) | |
| eliind.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐵 ) | ||
| eliind.d | ⊢ ( 𝑥 = 𝐾 → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷 ) ) | ||
| Assertion | eliind | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliind.a | ⊢ ( 𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ) | |
| 2 | eliind.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐵 ) | |
| 3 | eliind.d | ⊢ ( 𝑥 = 𝐾 → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷 ) ) | |
| 4 | eliin | ⊢ ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) ) |
| 6 | 1 5 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ) |
| 7 | 3 6 2 | rspcdva | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |