Metamath Proof Explorer


Theorem eliind2

Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eliind2.1 𝑥 𝜑
eliind2.2 ( 𝜑𝐴𝑉 )
eliind2.3 ( ( 𝜑𝑥𝐵 ) → 𝐴𝐶 )
Assertion eliind2 ( 𝜑𝐴 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 eliind2.1 𝑥 𝜑
2 eliind2.2 ( 𝜑𝐴𝑉 )
3 eliind2.3 ( ( 𝜑𝑥𝐵 ) → 𝐴𝐶 )
4 3 ex ( 𝜑 → ( 𝑥𝐵𝐴𝐶 ) )
5 1 4 ralrimi ( 𝜑 → ∀ 𝑥𝐵 𝐴𝐶 )
6 eliin ( 𝐴𝑉 → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
7 2 6 syl ( 𝜑 → ( 𝐴 𝑥𝐵 𝐶 ↔ ∀ 𝑥𝐵 𝐴𝐶 ) )
8 5 7 mpbird ( 𝜑𝐴 𝑥𝐵 𝐶 )