Step |
Hyp |
Ref |
Expression |
1 |
|
elim2if.1 |
⊢ ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐴 → ( 𝜒 ↔ 𝜃 ) ) |
2 |
|
elim2if.2 |
⊢ ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐵 → ( 𝜒 ↔ 𝜏 ) ) |
3 |
|
elim2if.3 |
⊢ ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐶 → ( 𝜒 ↔ 𝜂 ) ) |
4 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
5 |
4 1
|
syl |
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜃 ) ) |
6 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = if ( 𝜓 , 𝐵 , 𝐶 ) ) |
7 |
6
|
eqeq1d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐵 ↔ if ( 𝜓 , 𝐵 , 𝐶 ) = 𝐵 ) ) |
8 |
7 2
|
syl6bir |
⊢ ( ¬ 𝜑 → ( if ( 𝜓 , 𝐵 , 𝐶 ) = 𝐵 → ( 𝜒 ↔ 𝜏 ) ) ) |
9 |
6
|
eqeq1d |
⊢ ( ¬ 𝜑 → ( if ( 𝜑 , 𝐴 , if ( 𝜓 , 𝐵 , 𝐶 ) ) = 𝐶 ↔ if ( 𝜓 , 𝐵 , 𝐶 ) = 𝐶 ) ) |
10 |
9 3
|
syl6bir |
⊢ ( ¬ 𝜑 → ( if ( 𝜓 , 𝐵 , 𝐶 ) = 𝐶 → ( 𝜒 ↔ 𝜂 ) ) ) |
11 |
8 10
|
elimifd |
⊢ ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) ) |
12 |
5 11
|
cases |
⊢ ( 𝜒 ↔ ( ( 𝜑 ∧ 𝜃 ) ∨ ( ¬ 𝜑 ∧ ( ( 𝜓 ∧ 𝜏 ) ∨ ( ¬ 𝜓 ∧ 𝜂 ) ) ) ) ) |