Metamath Proof Explorer


Theorem elima

Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 19-Apr-2004)

Ref Expression
Hypothesis elima.1 𝐴 ∈ V
Assertion elima ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐶 𝑥 𝐵 𝐴 )

Proof

Step Hyp Ref Expression
1 elima.1 𝐴 ∈ V
2 elimag ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐶 𝑥 𝐵 𝐴 ) )
3 1 2 ax-mp ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ∃ 𝑥𝐶 𝑥 𝐵 𝐴 )