Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 14-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elima.1 | ⊢ 𝐴 ∈ V | |
| Assertion | elima3 | ⊢ ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 〈 𝑥 , 𝐴 〉 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elima.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | elima2 | ⊢ ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝐴 ) ) |
| 3 | df-br | ⊢ ( 𝑥 𝐵 𝐴 ↔ 〈 𝑥 , 𝐴 〉 ∈ 𝐵 ) | |
| 4 | 3 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 〈 𝑥 , 𝐴 〉 ∈ 𝐵 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 〈 𝑥 , 𝐴 〉 ∈ 𝐵 ) ) |
| 6 | 2 5 | bitri | ⊢ ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐶 ∧ 〈 𝑥 , 𝐴 〉 ∈ 𝐵 ) ) |