Description: Membership in an image. Theorem 34 of Suppes p. 65. (Contributed by NM, 20-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elimag | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝐴 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝑦 ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝐴 ) ) |
| 3 | dfima2 | ⊢ ( 𝐵 “ 𝐶 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝑦 } | |
| 4 | 2 3 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( 𝐵 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 𝑥 𝐵 𝐴 ) ) |