Metamath Proof Explorer


Theorem elimampo

Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025)

Ref Expression
Hypotheses rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
elimampo.d ( 𝜑𝐷𝑉 )
elimampo.x ( 𝜑𝑋𝐴 )
elimampo.y ( 𝜑𝑌𝐵 )
Assertion elimampo ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ ∃ 𝑥𝑋𝑦𝑌 𝐷 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 rngop.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 elimampo.d ( 𝜑𝐷𝑉 )
3 elimampo.x ( 𝜑𝑋𝐴 )
4 elimampo.y ( 𝜑𝑌𝐵 )
5 df-ima ( 𝐹 “ ( 𝑋 × 𝑌 ) ) = ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) )
6 5 eleq2i ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) )
7 1 reseq1i ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ( ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ↾ ( 𝑋 × 𝑌 ) )
8 resmpo ( ( 𝑋𝐴𝑌𝐵 ) → ( ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥𝑋 , 𝑦𝑌𝐶 ) )
9 3 4 8 syl2anc ( 𝜑 → ( ( 𝑥𝐴 , 𝑦𝐵𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥𝑋 , 𝑦𝑌𝐶 ) )
10 7 9 eqtrid ( 𝜑 → ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥𝑋 , 𝑦𝑌𝐶 ) )
11 10 rneqd ( 𝜑 → ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ran ( 𝑥𝑋 , 𝑦𝑌𝐶 ) )
12 11 eleq2d ( 𝜑 → ( 𝐷 ∈ ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝑥𝑋 , 𝑦𝑌𝐶 ) ) )
13 6 12 bitrid ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝑥𝑋 , 𝑦𝑌𝐶 ) ) )
14 eqid ( 𝑥𝑋 , 𝑦𝑌𝐶 ) = ( 𝑥𝑋 , 𝑦𝑌𝐶 )
15 14 elrnmpog ( 𝐷𝑉 → ( 𝐷 ∈ ran ( 𝑥𝑋 , 𝑦𝑌𝐶 ) ↔ ∃ 𝑥𝑋𝑦𝑌 𝐷 = 𝐶 ) )
16 2 15 syl ( 𝜑 → ( 𝐷 ∈ ran ( 𝑥𝑋 , 𝑦𝑌𝐶 ) ↔ ∃ 𝑥𝑋𝑦𝑌 𝐷 = 𝐶 ) )
17 13 16 bitrd ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ ∃ 𝑥𝑋𝑦𝑌 𝐷 = 𝐶 ) )