| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngop.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 2 |
|
elimampo.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
elimampo.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 4 |
|
elimampo.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝐵 ) |
| 5 |
|
df-ima |
⊢ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) = ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) |
| 6 |
5
|
eleq2i |
⊢ ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) ) |
| 7 |
1
|
reseq1i |
⊢ ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) |
| 8 |
|
resmpo |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 9 |
3 4 8
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 10 |
7 9
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 11 |
10
|
rneqd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝐷 ∈ ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
| 13 |
6 12
|
bitrid |
⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
| 15 |
14
|
elrnmpog |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ( 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |
| 17 |
13 16
|
bitrd |
⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |