Metamath Proof Explorer


Theorem eliman0

Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion eliman0 ( ( 𝐴𝐵 ∧ ¬ ( 𝐹𝐴 ) = ∅ ) → ( 𝐹𝐴 ) ∈ ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 fvbr0 ( 𝐴 𝐹 ( 𝐹𝐴 ) ∨ ( 𝐹𝐴 ) = ∅ )
2 orcom ( ( 𝐴 𝐹 ( 𝐹𝐴 ) ∨ ( 𝐹𝐴 ) = ∅ ) ↔ ( ( 𝐹𝐴 ) = ∅ ∨ 𝐴 𝐹 ( 𝐹𝐴 ) ) )
3 1 2 mpbi ( ( 𝐹𝐴 ) = ∅ ∨ 𝐴 𝐹 ( 𝐹𝐴 ) )
4 3 ori ( ¬ ( 𝐹𝐴 ) = ∅ → 𝐴 𝐹 ( 𝐹𝐴 ) )
5 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 ( 𝐹𝐴 ) ↔ 𝐴 𝐹 ( 𝐹𝐴 ) ) )
6 5 rspcev ( ( 𝐴𝐵𝐴 𝐹 ( 𝐹𝐴 ) ) → ∃ 𝑥𝐵 𝑥 𝐹 ( 𝐹𝐴 ) )
7 4 6 sylan2 ( ( 𝐴𝐵 ∧ ¬ ( 𝐹𝐴 ) = ∅ ) → ∃ 𝑥𝐵 𝑥 𝐹 ( 𝐹𝐴 ) )
8 fvex ( 𝐹𝐴 ) ∈ V
9 8 elima ( ( 𝐹𝐴 ) ∈ ( 𝐹𝐵 ) ↔ ∃ 𝑥𝐵 𝑥 𝐹 ( 𝐹𝐴 ) )
10 7 9 sylibr ( ( 𝐴𝐵 ∧ ¬ ( 𝐹𝐴 ) = ∅ ) → ( 𝐹𝐴 ) ∈ ( 𝐹𝐵 ) )