Step |
Hyp |
Ref |
Expression |
1 |
|
fvbr0 |
⊢ ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ∨ ( 𝐹 ‘ 𝐴 ) = ∅ ) |
2 |
|
orcom |
⊢ ( ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ∨ ( 𝐹 ‘ 𝐴 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝐴 ) = ∅ ∨ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
3 |
1 2
|
mpbi |
⊢ ( ( 𝐹 ‘ 𝐴 ) = ∅ ∨ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
4 |
3
|
ori |
⊢ ( ¬ ( 𝐹 ‘ 𝐴 ) = ∅ → 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
5 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ↔ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) |
6 |
5
|
rspcev |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐵 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
7 |
4 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) → ∃ 𝑥 ∈ 𝐵 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
8 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
9 |
8
|
elima |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ) |
10 |
7 9
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ ( 𝐹 ‘ 𝐴 ) = ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝐵 ) ) |