Metamath Proof Explorer


Theorem elimasn1

Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Use df-br and shorten. (Revised by BJ, 16-Oct-2024)

Ref Expression
Hypotheses elimasn1.1 𝐵 ∈ V
elimasn1.2 𝐶 ∈ V
Assertion elimasn1 ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 elimasn1.1 𝐵 ∈ V
2 elimasn1.2 𝐶 ∈ V
3 elimasng1 ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) )
4 1 2 3 mp2an ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 )